
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS

Int. J. Numer. Meth. Fluids 28: 617–631 (1998)

A FINITE ELEMENT ANALYSIS OF MACH REFLECTION
BY USING THE BOUSSINESQ EQUATION

SHOICHIRO KATOa,*,1, TOSHIMITSU TAKAGIb,2 AND MUTSUTO KAWAHARAc,3

a Technical Research Institute, OHKI Corporation, Chiba, Japan
b Department of Coastal Engineering, INA Corporation, Tokyo, Japan

c Department of Ci6il Engineering, Chuo Uni6ersity, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112, Japan

SUMMARY

The numerical analysis of ‘Mach reflection’, which is the reflection of an obliquely incident solitary wave
by a vertical wall, is presented. For the mathematical model of the analysis, the two-dimensional
Boussinesq equation is used. In order to solve the equation in space, the finite element method based on
the linear triangular element and the conventional Galerkin method is applied. The combination of
explicit and semi-implicit schemes is employed for the time integration. Moreover, one of the treatments
for the open boundary condition, in which the analytical solution of the linearized Boussinesq equation
in the outside domain is linked to the discrete values of velocity and water elevation in the inside domain,
is applied for the modeling of the Mach reflection problem. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The prediction of wave propagation characteristics in the shallow water region is one of the
most significant items for the prevention of the various hazards in the field of coastal
engineering. However, the wave transformation in this region includes very complicated
phenomena due to the simultaneous occurrence of several physical effects such as refraction,
diffraction, reflection and so on. Besides, the finite amplitude wave theory must be introduced
to predict these phenomena because the amplitude is relatively high in these areas. Therefore,
the various kinds of wave propagation analysis based on the finite amplitude wave theory
should be performed.

It is sometimes observed that the incident wave, with a certain incident angle, reflects with
an extraordinarily high amplitude along the vertical wall. This phenomenon is known as the
Mach reflection, which is studied in this paper. The previous observation [1] and experiments
[2,3,10] had confirmed that ordinary reflection of a solitary wave by a vertical wall is
impossible for adequately small angles of incidence and should be replaced by the Mach
reflection. When it comes to be the Mach reflection, the apexes of the incident and the
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reflected waves move away from the wall at a constant angle, and a third solitary wave, called
the ‘Mach stem’, takes part at the wall. It is also reported that the reflected wave component
vanishes according to the angle of incidence. This problem was also studied theoretically by
Miles [4] as a special case of an oblique interaction of two small-amplitude solitary waves.

Recently, the numerical analysis of Mach reflection was performed by Funakoshi [5] and
Tanaka [6]. Tanaka carried out this kind of calculation for a large-amplitude solitary wave and
showed a certain comparison with the Miles’ theory; the Miles’ theory is based on the
small-amplitude case. It should be considered that his research gave great contributions to
coastal engineering. Against these, this paper reports on calculations by the finite element
method (FEM) [7] and gives a comparison with the Miles’ theory in the case of a small-ampli-
tude incident wave. As the governing equation, the Boussinesq equation, which can estimate
the effect of wave crest curvature to obtain more accurate results [9] against the assumption of
hydrostatic pressure, is used for the non-linear dispersive wave analysis. A FEM to treat an
arbitrary boundary configuration is utilized to solve the Boussinesq equation. A new treatment
of the open boundary condition, which is one of the essential subjects in the numerical analysis
of the wave propagation problem, is presented in this paper. To compute the Mach reflection
appropriately, boundary problems which include such an open boundary should be investi-
gated. Another purpose of this study is to perform adequate boundary treatments for the
modeling of the Mach reflection problem.

2. GOVERNING EQUATIONS

Within a Cartesian co-ordinate system, the Boussinesq equation with two horizontal dimen-
sions is introduced. The equations of motion and continuity can be described as
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where u and 6 denote velocity components for the x- and y-directions, respectively, and h, h
and g represent wa&5vVvter elevation, water depth and gravity acceleration, respectively. The
right-hand sides of Equations (1) and (2) denote the dispersion term in which the dynamic
pressure can be complementarily estimated to obtain more-valid solutions against the assump-
tion of the hydrostatic pressure. On the boundary S1, the velocity is assumed as

un=ul=6m= ûn on S1, (4)

where û denotes the prescribed value on S1 and the subscript n denotes a normal direction
against this boundary. On the boundary S2, the water elevation is specified as

h= ĥ on S2, (5)

and on the open boundary S3, the following continuity condition is imposed

u= ū, 6= 6̄, h= h̄ on S3, (6)
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where the overbar relates to the prescribed values obtained by the solutions of the outer sea.
The initial condition is

u= û0, 6= 6̂0, h= ĥ0 at t=0, (7)

where the overhat means the initial value at t=0.

3. TREATMENT OF OPEN BOUNDARY

The treatment procedure for the open boundary condition is discussed in this section. The
derivation of a linear solution on the open boundary is presented, considering a linkage
between the inner and outer solutions. As mentioned before, the non-linear wave propagation
inside domain (analytical domain) is considered, while the linear solution of the outer domain
is assumed. So, if the wave with a large amplitude goes through the boundary from the inside
domain to the outside domain, no proper boundary condition can be set because the outer
solution assumed is not non-linear. However, this problem can be resolved by extending the
analytical domain so that this non-conforming condition does not influence the analysis of the
main parts. There is no essential resolution for the setting of the non-linear open boundary set.
To consider such a boundary treatment in detail will be the subject of a future study.

The analytical solution is employed for the modeling of the outer sea. To do this, the
linearized Boussinesq equation is used because of simplicity. The equations of motion and
continuity are rewritten as

(u
(t

+g
(h

(x
=

h2

3
� (3u
(x2 (t

+
(36

(x (y (t
�

, (8)

(6

(t
+g
(h

(y
=

h2

3
� (36

(y2 (t
+

(3u
(x (y (t

�
, (9)

(h

(t
+h
(u
(x

+h
(6

(y
=0. (10)

In order to derive the analytical solution, the velocity and water elevation are assumed in the
following form

ū= ũ exp(− jvt) exp{j(kxx+kyy)}, (11)

6̄= 6̃ exp(− jvt) exp{j(kxx+kyy)}, (12)

h̄= h̃ exp(− jvt) exp{j(kxx+kyy)}, (13)

where ũ, 6̃ and h̃ represent the amplitudes of velocity components and water elevation,
respectively, and kx, ky, v denote the components of wave numbers for the x- and y-directions
and angular frequency, respectively. The following equation is obtained by substituting
Equations (11)–(13) into Equations (8)–(10)
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ũ
6̃

h̃

Ã
Ç

É
=0, (14)

where
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The determinant of Equation (14) must be zero in order for ũ, 6̃ and h̃ to have non-trivial
solutions and can be derived as

v{(AB−C2)v2−gh(kx
2B+ky

2A−2kxkyC)}=0. (15)

The angular frequencies which satisfy Equation (15) are obtained as

v1=0, v2=c
'kx

2B+ky
2A−2kxkyC

AB−C2 , v3= −c
'kx

2B+ky
2A−2kxkyC

AB−C2 , (16)

where c=
gh is wave velocity and v1, v2 and v3 denote angular frequencies of constant,
outgoing and incident wave components, respectively. Substituting the general solutions into
the linearized Boussinesq Equations (8)–(10), and assuming the outgoing waves (considering
an angular frequency v2 only) to three directions (with three kinds of wave) through the open
boundary, the following equation can be obtained
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and h̄0
n are unknown constants. Equation (17) can be applicable to the case when only the

outgoing waves exist on the boundary; it is assumed that the constant and incident wave
components do not exist. Wave number k at the open boundary can be determined by the
wave period and velocity. Here the unknown constants in Equation (17) must be determined.
This equation, which denotes the solution of the outside domain, can be presented in the
following form

f( m=Wmlh̄0
l exp(− jvlt) m, l=1, 2, 3. (18)

On the other hand, the discrete values of velocity and water elevation of the inside domain are
expressed in the following form

fm=Tmgwg, (19)

where fm= (u, 6, h)T, wg= (ug, 6g, hg)T, and Tmg denotes the coefficients of a linear interpola-
tion function. In order to determine the unknown constants in Equation (18), the following
continuity condition is applied to the open boundary&

S 3

fm*(fm−f( m) dS=0, (20)

where fm* denotes the weighting function. By substituting Equations (18) and (19) into
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Equation (20), the unknown constants can be determined in the following form

h̄0
l=Wml

−1Tmgwg exp(jvlt). (21)

4. FINITE ELEMENT FORMULATIONS

To begin with, the governing Equations (1)–(3) are transformed into the following weighted
residual equations by employing the conventional Galerkin method.&
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where u*, 6* and h* represent weighting functions for the velocity and the water elevation,
respectively, and nx, ny denote the components of unit normals for the x- and y-directions.
Applying the analytical solution which was derived in the last section to the right-hand side of
Equations (22)–(24), and employing a linear interpolation function based on triangular finite
elements, the finite element equations can be described in the following form
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where the overdot denotes differentiation with respect to time and the coefficient matrices can
be expressed as follows

Mab=
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For the discretization in time, a one-step explicit scheme is used, which can be derived as
follows�
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In Equation (39), M( denotes the lumped coefficient of M, and M0 is the mixed coefficient,
which is written as

M0 =eM( + (1−e)M, (40)
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where e is referred to as the lumping parameter. Here, Equations (37) and (38) are solved using
the element-by-element conjugate gradient method which is frequently used in numerical
analysis of Navier–Stokes problems. Moreover, the equation of continuity (39) is solved
before the equations of motion (37) and (38); these are solved using the water elevation at the
n+1 time step.

5. NUMERICAL TEST FOR TREATMENT OF OPEN BOUNDARY

Before the analysis of the Mach reflection, an obliquely propagating solitary wave is analyzed
to test the open boundary treatment. Figure 1 shows the finite element discretization in which
the total number of nodes and elements are 10201 and 20000, respectively.

In this figure, the boundaries A–B and B–D are assumed to be open boundaries; the
oblique incidence of a solitary wave is assumed on the boundaries A–C and C–D. The solitary
wave on the incident boundary in this analysis is given by the first approximation of Laitone.
Figure 2 shows the solitary wave propagation in one direction. The aspects at the vertical
section B–C are shown in Figure 3. For the computational condition in this case, the lumping
parameter is 0.9600 and the time increment is 0.0250 s. The incident wave height is 0.01 m, and
the water depth is set at l.0 m. Moreover, the wave period for the determination of the wave
number is assumed to be 20.0 s. The calculations represent a relatively good result for the
treatment of the open boundary condition because the solitary wave is appropriately preserved
in the propagation. It is considered that the treatment of the present scheme can be applicable
to the outlet boundary in the Mach reflection analysis.

Figure 1. Finite element discretization.
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S. KATO ET AL.624

6. MACH REFLECTION PROBLEM

6.1. Miles’ theory

The main results with respect to the Mach reflection which were obtained by Miles, are
briefly summarized in this section. Firstly, the symbol used in the following Miles’ theory is
defined. The amplitude of the incident wave divided by the still water depth h is represented
by ai, and ci is the angle of incidence. Similarly, the amplitude of the reflected wave is denoted
ar, and cr is the angle of reflection. Moreover, the amplitude of the Mach stem (or the
maximum run-up at the wall) is defined as aM, and c� is the stem angle. The schematic
representation of the Mach reflection problem is presented in Figure 4.

Figure 2. Solitary wave propagation.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 617–631 (1998)
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Figure 2 (Continued)

Figure 3. At section B–C.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 617–631 (1998)
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Figure 4. Definition sketch of Mach reflection problem.

According to the Miles’ theory, which is based on the weak non-linearity, the regular type
of reflection is changed into the Mach reflection when ai�1 and ci/(3ai)1/251. Then, cr is not
equivalent to ci but has some larger value which depends on ai. On the other hand, ar is
smaller than ai and the reflected wave component vanishes according to ci. Besides, Miles
predicted that aM becomes four-times of the incident amplitude when ci= (3ai)1/2 and a steady
solitary wave appears along the wall. The numerical simulation of the Mach reflection is
performed and represented in the next section. A comparison, aM/ai versus ci, is also carried
out to confirm the quantitative agreement between the present calculation and the Miles’
theory.

Figure 5. Finite element discretization for the Mach reflection.
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6.2. Numerical tests

The solitary wave on the incident boundary is assumed by the first approximation solution
of Laitone [8]

h=h0 sech2 '3h0

4h3 (x−ct+a),

u=
'g

h
h cos(p−ci),

6=
'g

h
h sin(p−ci),

c=
'

gh
�

1+
h0

h
�

,

in which ci represents the angle of incidence and a denotes a changeable distance. Figure 5
shows the finite element discretization in which the total number of nodes and elements are
19836 and 39100, respectively. In this figure, the boundary B–C is assumed to be an open
boundary, and the oblique incidence of a solitary wave is assumed on the boundaries C–D and
D–E. The boundaries A–B and A–E are assumed to be slip boundaries.

Figure 6 shows the pattern of Mach reflection, which was calculated at an incident angle of
45°. For the computational condition in this case, the lumping parameter and the time
increment are the same as for the calculation of a solitary wave propagation.

The wave develops according to the time passed and it gradually becomes a steady state.
Such a characteristic should be noted so as to estimate the correct value of the maximum
run-up at the wall. The analytical domain should be extended along the wall line as far as
possible. Therefore, about twice the length of the former mesh (Figure 1) is used. Figure 7
shows the time variation of velocity distribution, and the development of the phenomenon can
be easily confirmed. For the computational condition, the incident wave height is 0.04 m and
the angle of incidence is 20°.

A comparison between Miles’ prediction and the present analysis, which is aM/ai versus ci,
is performed and shown in Figure 8. It should be noted that the Mach reflection is the initial
value problem which depends on the incident amplitude and angle, and that it is in the
ordinary process that the incident amplitude is fixed and the angle of incidence is varied. Here,
the incident amplitude is 0.04 m and the increment of the angle is 5°. Moreover, the oblique
wall is inclined in proportion to the angle of incidence so as to treat the incident boundary

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 617–631 (1998)
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adequately. A part of the mesh is deformed according to the angle of incidence. On the other
hand, aM/ai according to ci was described by Miles, e.g. there are three types of equation in
this respect. One is the equation of the Mach reflection type, and the others are the equations
of regular reflection type. The regular reflection types are grazing and non-grazing types. The
difference between the two types has a relationship with the angle of interaction.

In Figure 8, the dot represent the computed results of the presented method, and the Miles’
theory is described by the following Equations (a)–(c). Here, e=ci/(3ai)1/2 is defined.

aM

ai

=Í
Á

Ä

(1+e)2 . . . Mach reflection
4[1+ (1−1/e2)1/2] . . . regular grazing reflection
2+ [3/(2 sin2 c i)−3+2 sin2 ci]ai . . . regular non−grazing reflection

(a)
(b)
(c)

Figure 6. Mach reflection pattern computed by present scheme.
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Figure 6 (Continued)

7. CONCLUSION

The finite element analysis of the Mach reflection with the open boundary is presented in
this paper. The calculated results have shown qualitatively good agreements with the Miles’
theory, and the existence of the Mach reflection has been reconfirmed. Quantitatively, there
was also good agreement, as shown in Figure 8. For the small angle of incidence, the
numerical maximum amplitude agrees with the analytical result of the Mach reflection type
of Miles. It converges to the equation of the regular non-grazing type according to the
angle enlarged. The treatment of the open boundary condition by the present scheme could
be useful for the wave propagation problem. The treatment of the strong non-linearity and
the extension of wave number components in the open boundary problem still remain as
future subjects.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 28: 617–631 (1998)
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Figure 7. Time variation of velocity distribution.
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Figure 8. aM/ai vs. ci.
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